Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 367(6485): 1485-1489, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217728

RESUMO

Disrupting North Atlantic Deep Water (NADW) ventilation is a key concern in climate projections. We use (sub)centennially resolved bottom water δ13C records that span the interglacials of the last 0.5 million years to assess the frequency of and the climatic backgrounds capable of triggering large NADW reductions. Episodes of reduced NADW in the deep Atlantic, similar in magnitude to glacial events, have been relatively common and occasionally long-lasting features of interglacials. NADW reductions were triggered across the range of recent interglacial climate backgrounds, which demonstrates that catastrophic freshwater outburst floods were not a prerequisite for large perturbations. Our results argue that large NADW disruptions are more easily achieved than previously appreciated and that they occurred in past climate conditions similar to those we may soon face.

2.
Proc Natl Acad Sci U S A ; 117(1): 190-195, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871153

RESUMO

The Greenland Ice Sheet (GIS) has been losing mass at an accelerating rate over the recent decades. Models suggest a possible temperature threshold between 0.8 and 3.2 °C, beyond which GIS decline becomes irreversible. The duration of warmth above a given threshold is also a critical determinant for GIS survival, underlining the role of ocean warming, as its inertia prolongs warmth and triggers longer-term feedbacks. The exact point at which these feedbacks are triggered remains equivocal. Late Pleistocene interglacials provide potential case examples for constraining the past response of the GIS to a range of climate states, including conditions warmer than present. However, little is known about the magnitude and duration of warming near Greenland during these periods. Using high-resolution multiproxy surface ocean climate records off southern Greenland, we show that the previous 4 interglacials over the last ∼450 ka all reached warmer than present climate conditions and exceeded the modeled temperature threshold for GIS collapse but by different magnitudes and durations. Complete deglaciation of the southern GIS in Marine Isotope Stage 11c (MIS 11c; 394.7 to 424.2 ka) occurred under climates only slightly warmer than present (∼0.5 ± 1.6 °C), placing the temperature threshold for major GIS retreat in the lower end of model estimates and within projections for this century.

3.
Nat Commun ; 10(1): 5040, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695032

RESUMO

The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125-124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c-1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations.

4.
Science ; 343(6175): 1129-32, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24557839

RESUMO

Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal δ(13)C record, we show that the influence of North Atlantic Deep Water (NADW) was strong at the onset of the last interglacial period and was then interrupted by several prominent centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer and fresher than at present.


Assuntos
Aquecimento Global , Camada de Gelo , Água do Mar/química , Oceano Atlântico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...